X-Ray Imaging, Mathematics, and Puzzles

Authors:
Tamar Avineri, North Carolina School of Science and Mathematics, Durham NC
Emily Berkeley, Panther Creek High School, Cary, NC
Ashley Miller, North Rowan High School, Spencer, NC

Advisors: Eric Hallman, Rachel Minster, Arvind K. Saibaba (asaibab@ncsu.edu) North Carolina State University

Abstract: In this module, students will learn about x-ray imaging and how mathematics plays a role in generating the images that we obtain using x-ray devices. First, students will be given lessons on matrix operations including adding, multiplying, and Gaussian Elimination. Students will participate in several games/puzzles such as Kakuro and Nonogram. The strategy used in these games parallel the mathematical techniques used in generating images from x-ray devices. The students will read an article that ties x-ray imaging to mathematics and participate in a discussion.
Implementation Notes

❖ Length of module:
 ➢ In total, this unit is designed to take approximately 5 days of 90-minute lessons, or 10 days of 45-minute lessons.
 ➢ Each of the lessons is accompanied by an estimate of the length of time it is designed to take in class. If the estimate is longer than you are able to devote in class, feel free to select portions for students to complete outside of class.

❖ Relevant courses: This module is designed to be self-contained, as the first 3 lessons provide foundational knowledge in the linear algebra skills that students will need for the subsequent lessons. The materials are appropriate for any NC Math 4, Pre-Calculus, or Discrete Mathematics for Computer Science courses. This could also serve as an interesting study following the AP exam for students in AP Calculus AB or BC.

❖ Mathematical practices/student learning outcomes: In addition to the standards for mathematical practices, this module addresses a number of standards covered in NC Math 4, Pre-Calculus and Discrete Mathematics for Computer Science.
 ➢ Mathematical practices:
 ■ Make sense of problems and persevere in solving them.
 ■ Reason abstractly and quantitatively.
 ■ Construct viable arguments and critique the reasoning of others.
 ■ Model with mathematics.
 ■ Use appropriate tools strategically.
 ■ Attend to precision.
 ■ Look for and make use of structure.
 ■ Look for and express regularity in repeated reasoning.
 ■ Use strategies and procedures flexibly.
 ■ Reflect on mistakes and misconceptions.
 ➢ NC Math 4: NC.M4.N.2.1 Execute procedures of addition, subtraction, multiplication, and scalar multiplication on matrices; NC.M4.N.2.2 Execute procedures of addition, subtraction, and scalar multiplication on vectors.
 ➢ Precalculus: PC.N.2.1 Execute the sum and difference algorithms to combine matrices of appropriate dimensions; PC.N.2.2 Execute associative and distributive properties to matrices; PC.N.2.3 Execute commutative property to add matrices; PC.N.2.4 Execute properties of matrices to multiply a matrix by a scalar; PC.N.2.5 Execute the multiplication algorithm with matrices.
 ➢ Discrete Mathematics for Computer Science: DCS.N.1.1 Implement procedures of addition, subtraction, multiplication, and scalar multiplication on matrices;
DCS.N.1.2 Implement procedures of addition, subtraction, and scalar multiplication on vectors; DCS.N.2.1 Organize data into matrices to solve problems; DCS.N.2.2 Interpret solutions found using matrix operations in context; DCS.N.2.3 Represent a system of equations as a matrix equation

❖ **Assessments:**

➢ Feel free to select portions of the guided notes to serve as out-of-class activities.
➢ Any problem set contained within guided notes could be given as homework assignments.
➢ The teacher could choose to give students a standard test or quiz on the skills that have been learned.

❖ **Online delivery suggestions:**

➢ For asynchronous online delivery, create instructional videos to take students through the guided notes.
➢ For synchronous online delivery, display the guided notes on your screen and take students through the activities while you annotate on your screen (or writing on paper and using a document camera).
➢ Share all prepared documents through a learning management system so that students would have access to them at home

❖ **Student Versions:** Please note that the student versions are located at the end of this document in the Appendix.
Lesson 1: Introduction to Matrices and Matrix Operations

Lesson Plan

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NC.M4.N.2.1 Execute procedures of addition, subtraction, multiplication, and scalar multiplication on matrices</td>
<td>Content Objective: Elementary Matrix Operations</td>
</tr>
<tr>
<td>PC.N.2.1 Execute the sum and difference algorithms to combine matrices of appropriate dimensions; PC.N.2.2 Execute associative and distributive properties to matrices; PC.N.2.3 Execute commutative property to add matrices; PC.N.2.4 Execute properties of matrices to multiply a matrix by a scalar;</td>
<td>Vocabulary: matrix; row; column; dimension; square; transpose</td>
</tr>
<tr>
<td>DCS.N.1.1 Implement procedures of addition, subtraction, multiplication and scalar multiplication on matrices.</td>
<td>Materials Needed: guided notes and practice problems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Student Does</th>
<th>Teacher Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>(~60 minutes)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Warm Up | Elicit/Engage | ~15 min | Students read the opening problem (e.g., Textbook Problem or other context of interest) from a handout and/or projected on a screen.
In groups of 2-3, students talk briefly about how they would answer the question from the teacher. (~5 minutes)
The teacher brings back students to share out with the class. (~3 minutes)
Students are provided guided notes to document new terms (e.g., matrix, dimension, row, column, etc.) They will complete the notes through the discussion conducted by the teacher. (~5 minutes) |
| --- | --- | --- | --- |
| Teacher hands out a sheet of paper with the opening problem written on it and/or projects it on the screen. Teacher opens with the question, “How might we organize this information in a way that allows us to answer questions about the university’s inventory?”
After students discuss, the teacher solicits students’ responses.
If students do not suggest a matrix, the teacher will introduce the name and ask students if they are familiar with the term. If not, the teacher will define it through one of the matrices used to organize the information in the problem. |

| Explore I | Connectivity to build understanding of concepts | ~15 min | Students complete the second matrix from the problem in their groups. (~5 min)
Students work in groups of 2-3 to answer teacher’s question. (~5 minutes) |
| --- | --- | --- | --- |
| Teacher circulates the room to observe/monitor students’ work.
Teacher then poses question: “How could we use these matrices to determine the total inventory of books at the university?”
Once students have some time to answer question, teacher returns to full class discussion to ask how we could define matrix addition. |

| Explain I | Personalize/Differentiate as needed | ~5 min | Students offer their ideas on how to define matrix addition (and subtraction).
Students engage in class discussion on teachers’ questions. |
| --- | --- | --- | --- |
| Teacher conducts discussion on matrix addition and subtraction.
Teacher poses questions: “Is matrix addition commutative? Is it associative? Is matrix addition a group?” |
<table>
<thead>
<tr>
<th>Provide vocabulary</th>
<th>Clarify understandings</th>
<th>subtraction commutative? Is it associative? Why/why not?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explore II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectivity to</td>
<td></td>
<td>Teacher then poses question: “How could we use these matrices to determine the inventory of books at the university if the librarian would like to double the inventory?”</td>
</tr>
<tr>
<td>build understanding of concepts</td>
<td>Allow for collaboration consider heterogeneous groups</td>
<td>Once students have some time to answer question, teacher returns to full class discussion to ask how we could define scalar multiplication.</td>
</tr>
<tr>
<td>Move deliberately from concrete to abstract</td>
<td>Apply scaffolding & personalization</td>
<td></td>
</tr>
<tr>
<td>Explain II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personalize/Diff erentiate as needed</td>
<td>Clarify understandings</td>
<td>Teacher conducts discussion on scalar multiplication.</td>
</tr>
<tr>
<td>Extend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply knowledge to new scenarios</td>
<td>Continue to personalize as needed</td>
<td>Teacher circulates the room and observes/monitors students’ work.</td>
</tr>
<tr>
<td>Consider grouping homogeneously</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formative Assessment</td>
<td>How will you know if students understand throughout the lesson?</td>
<td>Teacher will review students’ work as they circulate room and monitor progress, engaging students who may be having difficulty in discussion to probe their thinking.</td>
</tr>
<tr>
<td>~5 min</td>
<td>Students work in groups of 2-3 to answer teacher’s question. (~5 minutes)</td>
<td></td>
</tr>
<tr>
<td>~5 min</td>
<td>Students offer their ideas on how to define scalar multiplication.</td>
<td></td>
</tr>
<tr>
<td>~15 min</td>
<td>Students complete class problem set in groups of 2-3 to apply their new knowledge.</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>Students will complete guided notes and a problem set for practice. Students turn in their solutions to the last problem in the problem set as an exit ticket (e.g., Stereo Problem)</td>
<td></td>
</tr>
</tbody>
</table>
Guided Notes – Teacher Version

Matrix Addition, Subtraction and Scalar Multiplication

A university is taking inventory of the books they carry at their two biggest bookstores. The East Campus bookstore carries the following books:

Hardcover: Textbooks-5280; Fiction-1680; NonFiction-2320; Reference-1890

Paperback: Textbooks-1930; Fiction-2705; NonFiction-1560; Reference-2130

The West Campus bookstore carries the following books:

Hardcover: Textbooks-7230; Fiction-2450; NonFiction-3100; Reference-1380

Paperback: Textbooks-1740; Fiction-2420; NonFiction-1750; Reference-1170

In order to work with this information, we can represent the inventory of each bookstore using an organized array of numbers known as a **matrix**.

Definitions: A **matrix** is a rectangular table of entries and is used to organize data in a way that can be used to solve problems. The following is a list of terms used to describe matrices:

- A matrix’s **size (or dimension)** is written by listing the number of rows “by” the number of columns.
- The values in a matrix, \(A\), are referred to as **entries** or **elements**. The entry in the “\(m^{th}\)” row and “\(n^{th}\)” column is written as \(a_{mn}\).
- A matrix is **square** if it has the same number of rows as it has columns.
- If a matrix has only one row, then it is a row **vector**. If it has only one column, then the matrix is a column **vector**.
- The **transpose** of a matrix, \(A\), written \(A^T\), switches the rows with the columns of \(A\) and the columns with the rows.
- Two matrices are **equal** if they have the same size and the same corresponding entries.
The inventory of the books at the East Campus bookstore can be represented with the following 2×4 matrix:

$$E = \begin{bmatrix}
T & F & N & R \\
\text{Hardback} & 5280 & 1680 & 2320 & 1890 \\
\text{Paperback} & 1930 & 2705 & 1560 & 2130
\end{bmatrix}$$

Similarly, the West Campus bookstore’s inventory can be represented with the following matrix:

$$W = \begin{bmatrix}
T & F & N & R \\
\text{Hardback} & 7230 & 2450 & 3100 & 1380 \\
\text{Paperback} & 1740 & 2420 & 1750 & 1170
\end{bmatrix}$$

Adding and Subtracting Matrices

In order to add or subtract matrices, they must first be of the same size. The result of the addition or subtraction is a matrix of the same size as the matrices themselves, and the entries are obtained by adding or subtracting the elements in corresponding positions.

In our campus bookstores example, we can find the total inventory between the two bookstores as follows:

$$E + W = \begin{bmatrix}
5280 & 1680 & 2320 & 1890 \\
1930 & 2705 & 1560 & 2130
\end{bmatrix} + \begin{bmatrix}
7230 & 2450 & 3100 & 1380 \\
1740 & 2420 & 1750 & 1170
\end{bmatrix} = \begin{bmatrix}
12510 & 4130 & 5420 & 3270 \\
3670 & 5125 & 3310 & 3300
\end{bmatrix}$$
Question: Is matrix addition commutative (e.g., $A + B = B + A$)? Why or why not?
Matrix addition is commutative. This is because the operation is based in the addition of real numbers, as the entries of each matrix are added to their corresponding entries in the other matrix/matrices. Since addition of real numbers is commutative, so is matrix addition.

Question: Is matrix subtraction commutative (e.g., $A - B = B - A$)? Why or why not?
Matrix subtraction is not commutative. This is because the operation is based in the subtraction of real numbers, as the entries of each matrix are subtracted from their corresponding entries in the other matrix/matrices. Since subtraction of real numbers is not commutative, neither is matrix subtraction.

Question: Is matrix addition associative (e.g., $(A + B) + C = A + (B + C)$)? Why or why not?
Matrix addition is associative. This is because the operation is based in the addition of real numbers, as the entries of each matrix are added to their corresponding entries in the other matrix/matrices. Since addition of real numbers is associative, so is matrix addition.

Question: Is matrix subtraction associative (e.g., $(A - B) - C = A - (B - C)$)? Why or why not?
Matrix subtraction is not associative. This is because the operation is based in the subtraction of real numbers, as the entries of each matrix are subtracted from their corresponding entries in the other matrix/matrices. Since subtraction of real numbers is not associative, neither is matrix subtraction.

Scalar Multiplication

Multiplying a matrix by a constant (or scalar) is as simple as multiplying each entry by that number! Suppose the bookstore manager in East Campus wants to double his inventory. He can find the number of books of each type that he would need by simply multiplying the matrix E by the scalar (or constant) 2. The result is as follows:

$$2E = 2 \times \begin{bmatrix} 5280 & 1680 & 2320 & 1890 \\ 1930 & 2705 & 1560 & 2130 \end{bmatrix} = \begin{bmatrix} 2(5280) & 2(1680) & 2(2320) & 2(1890) \\ 2(1930) & 2(2705) & 2(1560) & 2(2130) \end{bmatrix}$$

$$\begin{bmatrix} 2(5280) & 2(1680) & 2(2320) & 2(1890) \\ 2(1930) & 2(2705) & 2(1560) & 2(2130) \end{bmatrix} = \begin{bmatrix} 10560 & 3360 & 4640 & 3780 \\ 3860 & 5410 & 3120 & 4260 \end{bmatrix}$$
Exercises: Consider the following matrices:

\[A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -4 & 3 \\ -6 & 1 & 8 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 8 & -6 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 6 & -21 \\ 2 & 4 & -9 \\ 5 & -7 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix} \]

Find each of the following, or explain why the operation cannot be performed:

a. \(A + B \): This operation cannot be performed, since matrices \(A \) and \(B \) are of different dimensions.

b. \(B - A \): This operation also cannot be performed, as \(A \) and \(B \) have different dimensions.

c. \(A - C = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -4 & 3 \\ -6 & 1 & 8 \end{bmatrix} - \begin{bmatrix} 0 & 6 & -21 \\ 2 & 4 & -9 \\ 5 & -7 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -6 & 22 \\ 0 & -8 & 12 \\ -11 & 8 & 7 \end{bmatrix} \)

d. \(C - A = \begin{bmatrix} 0 & 6 & -21 \\ 2 & 4 & -9 \\ 5 & -7 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 1 \\ 2 & -4 & 3 \\ -6 & 1 & 8 \end{bmatrix} = \begin{bmatrix} -1 & 6 & -22 \\ 0 & 8 & -12 \\ 11 & -8 & -7 \end{bmatrix} \)

e. \(5B = 5 \times \begin{bmatrix} 2 & 8 & -6 \end{bmatrix} = \begin{bmatrix} 10 & 40 & -30 \end{bmatrix} \)

f. \(-A + 4C = -\begin{bmatrix} 1 & 0 & 1 \\ 2 & -4 & 3 \\ -6 & 1 & 8 \end{bmatrix} + 4 \times \begin{bmatrix} 0 & 6 & -21 \\ 2 & 4 & -9 \\ 5 & -7 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 24 & -85 \\ -2 & 4 & -3 \\ 6 & -1 & -8 \end{bmatrix} + \begin{bmatrix} 0 & 24 & -84 \\ 8 & 16 & -36 \\ 20 & -28 & 4 \end{bmatrix} = \begin{bmatrix} -1 & 44 & -171 \\ -2 & 28 & -45 \\ 26 & -29 & -4 \end{bmatrix} \)

g. \(B - D \): This operation cannot be performed, since \(B \) and \(D \) are not of the same size.
h. \[2C - 6A = 2 \begin{bmatrix} 0 & 6 & -21 \\ 2 & 4 & -9 \\ 5 & -7 & 1 \end{bmatrix} - 6 \begin{bmatrix} 1 & 0 & 1 \\ 2 & -4 & 3 \\ -6 & 1 & 8 \end{bmatrix} = \]
\[\begin{bmatrix} 0 & 12 & -42 \\ 4 & 8 & -18 \\ 10 & -14 & 2 \end{bmatrix} - \begin{bmatrix} 6 & 0 & 6 \\ 12 & -24 & 18 \\ -36 & 6 & 48 \end{bmatrix} = \begin{bmatrix} -6 & 12 & -48 \\ -8 & 32 & -36 \\ 46 & -20 & -46 \end{bmatrix} \]

i. \[B^T + D = \begin{bmatrix} 2 \\ 8 \\ -6 \end{bmatrix} + \begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \\ -3 \end{bmatrix} \]
Lesson 2: Matrix Multiplication

Lesson Plan

<table>
<thead>
<tr>
<th>Standard</th>
<th>Topic/Day: Matrix Multiplication</th>
<th>Time</th>
<th>Student Does</th>
<th>Teacher Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC.M4.N.2.1 Execute procedures of addition, subtraction, multiplication, and scalar multiplication on matrices</td>
<td>Content Objective: Elementary Matrix Operations</td>
<td>~70 minutes</td>
<td>Students read the opening problem (e.g., Opera Problem or other context of interest) from a handout and/or projected on a screen.</td>
<td>Teacher hands out a sheet of paper with the opening problem written on it and/or projects it on the screen. Teacher opens with the question, “How might we organize this information in a way that allows us to answer the question?”</td>
</tr>
<tr>
<td>PC.N.2.1 Execute the sum and difference algorithms to combine matrices of appropriate dimensions; PC.N.2.2 Execute associative and distributive properties to matrices; PC.N.2.3 Execute commutative property to add matrices; PC.N.2.4 Execute properties of matrices to multiply a matrix by a scalar;</td>
<td>(~70 minutes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCS.N.1.1 Implement procedures of addition, subtraction, multiplication and scalar multiplication on matrices; DCS.N.2.1 Organize data into matrices to solve problems; DCS.N.2.2 Interpret solutions found using matrix operations in context</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warm Up

Elicit/Engage

Build relevance through a problem
Try to find out what your students already know
Get them interested

~5 min

Students read the opening problem (e.g., Opera Problem or other context of interest) from a handout and/or projected on a screen.
<table>
<thead>
<tr>
<th>Explore</th>
<th>~15 min</th>
<th>Teacher asks students to calculate each value of interest by hand, showing their work but not using any specific method. The teacher brings students back to share their results and confirm their results with other groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectivity to build understanding of concepts</td>
<td>In groups of 2-3, students work together to calculate each value of interest by hand (not using any specific method). (~10 minutes) Students work in groups of 2-3 to answer teacher’s question. (~10 minutes). Students can break the work up among their group members.</td>
<td></td>
</tr>
<tr>
<td>Allow for collaboration consider heterogeneous groups Move deliberately from concrete to abstract Apply scaffolding & personalization</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explain</th>
<th>~15 min</th>
<th>Teacher conducts lesson on matrix multiplication using the opening problem to demonstrate the operation. Teacher poses questions: “Is matrix multiplication commutative? Is it associative? Why/why not?” Teacher provides examples of why they are/aren’t, and students practice the operation with those examples.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personalize/Differentiate as needed Adjust along teacher/student centered continuum Provide vocabulary Clarify understandings</td>
<td>Students follow along the teachers’ explanation on their opening problem. Students share their thoughts on teacher’s posed questions.</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extend</th>
<th>~25 min</th>
<th>Teacher will review students’ work as they circulate room and monitor progress, engaging students who may be having difficulty in discussion to probe their thinking. Teacher brings class back together to engage in debrief on the problem set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply knowledge to new scenarios Continue to personalize as needed Consider grouping homogeneously</td>
<td>Students complete class problem set in groups of 2-3 to apply their new knowledge.</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluate Formative Assessment</th>
<th>~10 min</th>
<th>Teacher poses exit ticket problem for students to turn in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>How will you know if students understand throughout the lesson?</td>
<td>Students work on exit ticket problem and turn it in.</td>
<td>---</td>
</tr>
</tbody>
</table>
Guided Notes Lesson 2 – Teacher Version

Matrix Multiplication

The Metropolitan Opera is planning its last cross-country tour. It plans to perform *Carmen* and *La Traviata* in Atlanta in May. The person in charge of logistics wants to make plane reservations for the two troupes. *Carmen* has 2 stars, 25 other adults, 5 children, and 5 staff members. *La Traviata* has 3 stars, 15 other adults, and 4 staff members. There are 3 airlines to choose from. Redwing charges round-trip fares to Atlanta of $630 for first class, $420 for coach, and $250 for youth. Southeastern charges $650 for first class, $350 for coach, and $275 for youth. Air Atlanta charges $700 for first class, $370 for coach, and $150 for youth. Assume stars travel first class, other adults and staff travel coach, and children travel for the youth fare.

Use multiplication and addition to find the total cost for each troupe to travel each of the airlines.

Carmen/Redwing: $2(630) + 30(420) + 5(250) = $15110

Carmen/Southeastern: $2(650) + 30(350) + 5(275) = $13175

Carmen/Air Atlanta: $2(700) + 30(370) + 5(150) = $13250

La Traviata/Redwing: $3(630) + 19(420) + 0(250) = $9870

La Traviata/Southeastern: $3(650) + 19(350) + 0(275) = $8600

La Traviata/Air Atlanta: $3(700) + 19(370) + 0(150) = $9130
It turns out that we can solve problems like these using a matrix operation, specifically \textbf{matrix multiplication}!

We first note that matrix multiplication is only defined for matrices of certain sizes. For the product AB of matrices A and B, where A is an $m \times n$ matrix, B must have the same number of rows as A has columns. So, B must have size $n \times p$. The product AB will have size $m \times p$.

\textbf{Exercises}

The following is a set of abstract matrices (without row and column labels):

\begin{align*}
M &= \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} & N &= \begin{bmatrix} 2 & 4 & 1 \\ 0 & -1 & 3 \\ 1 & 0 & 2 \end{bmatrix} & O &= \begin{bmatrix} 6 \end{bmatrix} \\
L &= \begin{bmatrix} 2 \\ 4 \\ 1 \\ 0 \end{bmatrix} & M &= \begin{bmatrix} 2 \\ 6 \\ -1 \end{bmatrix} & N &= \begin{bmatrix} 3 \\ 1 \end{bmatrix} & R &= \begin{bmatrix} 3 & 1 \\ -1 & 0 \end{bmatrix} \\
S &= \begin{bmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ -1 & 2 & 1 \end{bmatrix} & T &= \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} & U &= \begin{bmatrix} 4 & 2 & 6 & -1 \\ 5 & 3 & 1 & 0 \\ 0 & 2 & -1 & 1 \end{bmatrix}
\end{align*}

List at least 5 orders of pairs of matrices from this set for which the product is defined. State the dimension of each product.

\begin{itemize}
 \item \textbf{MO}: 2×1
 \item \textbf{MP}: 2×2
 \item \textbf{PM}: 2×2
 \item \textbf{MR}: 2×2
 \item \textbf{RM}: 2×2
 \item \textbf{NQ}: 3×1
 \item \textbf{NU}: 3×4
 \item \textbf{PO}: 2×1
 \item \textbf{US}: 3×2
 \item \textbf{UT}: 3×1
\end{itemize}
Back to the opera…

Define two matrices that organize the information given:

\[
\begin{align*}
\text{Carmen} & : \\
\text{La Traviata} & :
\end{align*}
\]

\[
\begin{bmatrix}
\text{stars} & \text{adults} & \text{children} \\
2 & 30 & 5 \\
3 & 19 & 0
\end{bmatrix}
\]

\[
\begin{align*}
\text{Red} & : \\
\text{South} & : \\
\text{Air} & :
\end{align*}
\]

\[
\begin{bmatrix}
\text{stars} & \text{adults} & \text{children} \\
630 & 650 & 700 \\
420 & 350 & 370 \\
250 & 275 & 150
\end{bmatrix}
\]

We can multiply these two matrices to obtain the same answers we obtained above, all in one matrix!

\[
\begin{align*}
\text{Carmen} & : \\
\text{La Traviata} & :
\end{align*}
\]

\[
\begin{bmatrix}
\text{stars} & \text{adults} & \text{children} \\
2 & 30 & 5 \\
3 & 19 & 0
\end{bmatrix} \times \begin{bmatrix}
\text{stars} & \text{adults} & \text{children} \\
630 & 650 & 700 \\
420 & 350 & 370 \\
250 & 275 & 150
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\text{Red} & \text{South} & \text{Air} \\
15110 & 13175 & 13250 \\
9870 & 8600 & 9130
\end{bmatrix}
\]

\text{Carmen}/\text{Redwing: }15110

\text{Carmen}/\text{Southeastern: }13175

\text{Carmen}/\text{Air Atlanta: }13250

\text{La Traviata}/\text{Redwing: }9870

\text{La Traviata}/\text{Southeastern: }8600

\text{La Traviata}/\text{Air Atlanta: }9130
Exercises

1. The K.L. Mutton Company has investments in three states - North Carolina, North Dakota, and New Mexico. Its deposits in each state are divided among bonds, mortgages, and consumer loans. The amount of money (in millions of dollars) invested in each category on June 1 is displayed in the table below.

<table>
<thead>
<tr>
<th></th>
<th>NC</th>
<th>ND</th>
<th>NM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds</td>
<td>13</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Mort.</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Loans</td>
<td>29</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

The current yields on these investments are 7.5% for bonds, 11.25% for mortgages, and 6% for consumer loans. Use matrix multiplication to find the total earnings for each state.

Total earnings for each state (in millions of dollars):

\[
\begin{bmatrix}
1.075 & 1.125 & 1.06 \\
\end{bmatrix}
\begin{bmatrix}
13 & 25 & 22 \\
6 & 9 & 4 \\
29 & 17 & 13 \\
\end{bmatrix}\]

2. Several years ago, Ms. Allen invested in growth stocks, which she hoped would increase in value over time. She bought 100 shares of stock A, 200 shares of stock B, and 150 shares of stock C. At the end of each year she records the value of each stock. The table below shows the price per share (in dollars) of stocks A, B, and C at the end of the years 1984, 1985, and 1986.

<table>
<thead>
<tr>
<th></th>
<th>1984</th>
<th>1985</th>
<th>1986</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock A</td>
<td>68.00</td>
<td>72.00</td>
<td>75.00</td>
</tr>
<tr>
<td>Stock B</td>
<td>55.00</td>
<td>60.00</td>
<td>67.50</td>
</tr>
<tr>
<td>Stock C</td>
<td>82.50</td>
<td>84.00</td>
<td>87.00</td>
</tr>
</tbody>
</table>

Calculate the total value of Ms. Allen’s stocks at the end of each year.

Total value of the stocks (in dollars) at the end of each year:

\[
\begin{bmatrix}
100 & 200 & 150 \\
\end{bmatrix}
\begin{bmatrix}
68 & 72 & 75 \\
55 & 60 & 67.5 \\
82.5 & 84 & 87 \\
\end{bmatrix} = \begin{bmatrix}
1984 & 1985 & 1986 \\
\end{bmatrix}
\begin{bmatrix}
30,175 & 31,800 & 34,050 \\
\end{bmatrix}
\]
3. The Sound Company produces stereos. Their inventory includes four models - the Budget, the Economy, the Executive, and the President models. The Budget needs 50 transistors, 30 capacitors, 7 connectors, and 3 dials. The Economy model needs 65 transistors, 50 capacitors, 9 connectors, and 4 dials. The Executive model needs 85 transistors, 42 capacitors, 10 connectors, and 6 dials. The President model needs 85 transistors, 42 capacitors, 10 connectors, and 12 dials. The daily manufacturing goal in a normal quarter is 10 Budget, 12 Economy, 11 Executive, and 7 President stereos.

a. How many transistors are needed each day? Capacitors? Connectors? Dials?

b. During August and September, production is increased by 40%. How many Budget, Economy, Executive, and President models are produced daily during these months?

c. It takes 5 person-hours to produce the Budget model, 7 person-hours to produce the Economy model, 6 person-hours for the Executive model, and 7 person-hours for the President model. Determine the number of employees needed to maintain the normal production schedule, assuming everyone works an average of 7 hours each day. How many employees are needed in August and September?

Define the matrices for the inventory parts (I) and the daily manufacturing goal (N) as

\[
I = \begin{bmatrix}
B & Ec & Ex & P \\
50 & 30 & 7 & 3 \\
65 & 50 & 9 & 4 \\
85 & 42 & 10 & 6 \\
85 & 42 & 10 & 12
\end{bmatrix}
\quad \text{and} \quad
N = \begin{bmatrix}
B & Ec & Ex & P \\
10 & 12 & 11 & 7
\end{bmatrix}
\]

a. The answers are the results of the matrix multiplication

\[
NI = \begin{bmatrix}
t & ca & co & d \\
2810 & 1656 & 358 & 228
\end{bmatrix}
\]

b. The new daily manufacturing goals are given by

\[
1.4N = \begin{bmatrix}
B & Ec & Ex & P \\
14 & 16.8 & 15.4 & 9.8
\end{bmatrix}
\]

Which should be rounded to integer quantities

c. Define a matrix H for hours of labor as

\[
H = \begin{bmatrix}
B & Ec & Ex & P \\
5 & 7 & 6 & 7
\end{bmatrix}
\]

The number of labor hours needed per week is given by
\[NH = 249 \]

With 7-hour workdays, the number of employees needed is \(\frac{249}{7} = 35.6 \), which implies that 36 employees are needed to maintain full production. For August and September, we want \(\frac{1.4NH}{7} = \frac{348.6}{7} \), which rounds to 50.

4. The president of the Lucrative Bank is hoping for a 21% increase in checking accounts, a 35% increase in savings accounts, and a 52% increase in market accounts. The current statistics on the number of accounts at each branch are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Checking</th>
<th>Savings</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northgate</td>
<td>40039</td>
<td>10135</td>
<td>512</td>
</tr>
<tr>
<td>Downtown</td>
<td>15231</td>
<td>8751</td>
<td>105</td>
</tr>
<tr>
<td>South Square</td>
<td>25612</td>
<td>12187</td>
<td>97</td>
</tr>
</tbody>
</table>

What is the goal for each branch in each type of account? (HINT: multiply by a \(3 \times 2 \) matrix with certain nonzero entries on the diagonal and zero entries elsewhere.) What will be the total number of accounts at each branch?

The goal for each branch in each type of account is given by:

\[
\begin{bmatrix}
N & c & s & m \\
S & c & s & m \\
D & c & s & m \\
\end{bmatrix} =
\begin{bmatrix}
48447 & 13682 & 778.24 \\
18430 & 11814 & 159.6 \\
30991 & 16452 & 147.44 \\
\end{bmatrix}
\]

Right-multiplying this result by the matrix \(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) yields the following total number of accounts at each branch:

\[
\begin{bmatrix}
N & 62907.68 \\
D & 30402.96 \\
S & 47590.41 \\
\end{bmatrix}
\]

Note: this answer can also be obtained by just adding up the entries in each row of the previous matrix.
Lesson 3: Solving Matrix Equations Using Gaussian Elimination

Lesson Plan

<table>
<thead>
<tr>
<th>Standard</th>
<th>Topic/Day: Solving Matrix Equations Using Gaussian Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS.N.2.1 Organize data into matrices to solve problems;</td>
<td>Vocabulary: Gaussian elimination</td>
</tr>
<tr>
<td>DCS.N.2.2 Interpret solutions found using matrix operations in context;</td>
<td>(~75 minutes)</td>
</tr>
<tr>
<td>DCS.N.2.3 Represent a system of equations as a matrix equation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Student Does</th>
<th>Teacher Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>~5 min</td>
<td>Students read the opening problem (e.g., Business Problem or other context of interest) from a handout and/or projected on a screen.</td>
<td>Teacher hands out a sheet of paper with the opening problem written on it and/or projects it on the screen. Teacher opens with the question, “How might we represent this problem with a system of equations?”</td>
</tr>
<tr>
<td>~10 min</td>
<td>Students work in groups of 2-3 to answer teacher’s question.</td>
<td>Teacher asks students to consider how they could use matrices to represent the system of equations as a matrix equation. The teacher brings students back to share their results.</td>
</tr>
<tr>
<td>~30 min</td>
<td>Students follow along the teachers’ explanation on a problem out of context. Students work together on practice problems based on the teacher’s lesson.</td>
<td>Teacher conducts lesson on solving a matrix equation using a non-contextual problem. Teacher introduces the method of Gaussian elimination</td>
</tr>
<tr>
<td>Clarify understandings</td>
<td>Clarify understandings</td>
<td>Clarify understandings</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Elimination during this part of the lesson.</td>
<td>Teacher includes a tutorial on using the calculator to apply Gaussian Elimination.</td>
<td></td>
</tr>
<tr>
<td>Extend</td>
<td>Extend</td>
<td>Extend</td>
</tr>
<tr>
<td>Apply knowledge to new scenarios</td>
<td>Apply knowledge to new scenarios</td>
<td>Apply knowledge to new scenarios</td>
</tr>
<tr>
<td>Continue to personalize as needed</td>
<td>Continue to personalize as needed</td>
<td>Continue to personalize as needed</td>
</tr>
<tr>
<td>Consider grouping homogeneously</td>
<td>Consider grouping homogeneously</td>
<td>Consider grouping homogeneously</td>
</tr>
<tr>
<td>~20 min</td>
<td>Students apply their new understanding to the opening problem.</td>
<td>Students apply their new understanding to the opening problem.</td>
</tr>
<tr>
<td>Teacher will review students’ work as they circulate room and monitor progress, engaging students who may be having difficulty in discussion to probe their thinking.</td>
<td>Teacher brings class back together to engage in debrief on the problem set.</td>
<td>Teacher brings class back together to engage in debrief on the problem set.</td>
</tr>
<tr>
<td>Evaluate</td>
<td>Evaluate</td>
<td>Evaluate</td>
</tr>
<tr>
<td>Formative Assessment</td>
<td>Formative Assessment</td>
<td>Formative Assessment</td>
</tr>
<tr>
<td>How will you know if students understand throughout the lesson?</td>
<td>How will you know if students understand throughout the lesson?</td>
<td>How will you know if students understand throughout the lesson?</td>
</tr>
<tr>
<td>~10 min</td>
<td>Students work on exit ticket problem and turn it in.</td>
<td>Students work on exit ticket problem and turn it in.</td>
</tr>
<tr>
<td>Teacher poses exit ticket problem for students to turn in.</td>
<td>Teacher poses exit ticket problem for students to turn in.</td>
<td>Teacher poses exit ticket problem for students to turn in.</td>
</tr>
</tbody>
</table>
Guided Notes - Teacher Version

Solving Linear Systems of Equations Using Gaussian Elimination

A business is sponsoring grants for three different projects: scholarships for employees, public service projects, and remodeling of its storefronts. Each of the store locations in Mathtown made requests for funds with the relative amounts requested by each location distributed as shown in the following table:

<table>
<thead>
<tr>
<th>Project</th>
<th>Location</th>
<th>East</th>
<th>West</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarships</td>
<td></td>
<td>50%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>Public Service</td>
<td></td>
<td>20%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>Remodeling</td>
<td></td>
<td>30%</td>
<td>40%</td>
<td>20%</td>
</tr>
</tbody>
</table>

The corporate office has decided to grant $100,000 for the projects, and they decided to distribute it with 43% to scholarships, 28% to public service and 29% to remodeling.

How can we represent this problem with a system of equations?

Let $x =$ amount of money for the East location
Let $y =$ amount of money for the West location
Let $z =$ amount of money for the South location

We therefore have the following system of equations:

\[
\begin{align*}
0.5x + 0.3y + 0.4z &= 43,000 \\
0.2x + 0.3y + 0.4z &= 28,000 \\
0.3x + 0.4y + 0.2z &= 29,000
\end{align*}
\]

Example: Consider the following system of linear equations (recall this from Algebra II):

\[
\begin{align*}
x + 3y &= 0 \\
x + y + z &= 1 \\
3x - y - z &= 11
\end{align*}
\]

We can solve this system by representing it using matrices.
We will name the **coefficient matrix** \(A = \begin{bmatrix} 1 & 3 & 0 \\ 1 & 1 & 1 \\ 3 & -1 & -1 \end{bmatrix} \), the **variable vector** \(X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \), and the **column vector** \(B = \begin{bmatrix} 0 \\ 1 \\ 11 \end{bmatrix} \). So, our **matrix equation** (also referred to as a linear system of equations) representing the system can be written as \(AX = B \):

\[
\begin{bmatrix}
1 & 3 & 0 \\
1 & 1 & 1 \\
3 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
=
\begin{bmatrix}
0 \\
1 \\
11
\end{bmatrix}
\]

One way to solve this system is to use an approach known as **Gaussian elimination**, or **row reduction**.

Gaussian Elimination

You may recall from your prior mathematics work that there are three possible conclusions we can make about the solution to a system of equations.

Case 1: There exists one unique solution.
Case 2: There is no solution.
Case 3: There is an infinite number of solutions.

Case 1: There exists one unique solution.

Recall our example from above:

\[
\begin{bmatrix}
1 & 3 & 0 \\
1 & 1 & 1 \\
3 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
=
\begin{bmatrix}
0 \\
1 \\
11
\end{bmatrix}
\]

To begin, we write the associated **augmented matrix**, which is written in the following form:

\[
\begin{bmatrix}
1 & 3 & 0 & 0 \\
1 & 1 & 1 & 1 \\
3 & -1 & -1 & 11
\end{bmatrix}
\]

To apply the method on a matrix, we use **elementary row operations** to modify the matrix. Our goal is to end up with the **identity matrix**, which is an \(n \times n \) matrix with all 1’s in the main diagonal and zeros elsewhere: \(I = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} \), on the left side of the augmented matrix.
Our solution to the system of equations will be the resulting matrix on the right side of the augmented matrix. This is because the resulting augmented matrix would represent a system of equations in which each variable could be solved for (if a solution exists).

Elementary Row Operations:

There are three operations that can be applied to modify the matrix and still preserve the solution to the system of equations.

- Exchanging two rows (which represents the switching the listing order of two equations in the system)
- Multiplying a row by a nonzero scalar (which represents multiplying both sides of one of the equations by a nonzero scalar)
- Adding a multiple of one row to another (which represents does not affect the solution, since both equations are in the system)

For our example…

\[
\begin{align*}
x + 3y &= 0 & R_1 \\
x + y + z &= 1 & R_2 \\
3x - y - z &= 11 & R_3
\end{align*}
\]

<table>
<thead>
<tr>
<th>System of equations</th>
<th>Row operation</th>
<th>Augmented matrix</th>
</tr>
</thead>
</table>
| \(x + 3y = 0\) | | \[
\begin{bmatrix}
1 & 3 & 0 & 0 \\
1 & 1 & 1 & 1 \\
3 & -1 & -1 & 11
\end{bmatrix}
\] |
| \(x + y + z = 1\) | | \[
\begin{bmatrix}
1 & 3 & 0 & 0 \\
0 & -2 & 1 & 1 \\
3 & -1 & -1 & 11
\end{bmatrix}
\] |
| \(3x - y - z = 11\) | \(R_2 - R_1 \rightarrow R_2\) | \[
\begin{bmatrix}
1 & 3 & 0 & 0 \\
0 & -2 & 1 & 1 \\
3 & -1 & -1 & 11
\end{bmatrix}
\] |
| \(x + 3y = 0\) | \(R_3 - 3R_1 \rightarrow R_3\) | \[
\begin{bmatrix}
1 & 3 & 0 & 0 \\
0 & -2 & 1 & 1 \\
0 & -10 & -1 & 11
\end{bmatrix}
\] |
| \(-12y = 12\) | \(R_2 + R_3 \rightarrow R_2\) | \[
\begin{bmatrix}
1 & 3 & 0 & 0 \\
0 & -12 & 0 & 12 \\
0 & -10 & -1 & 11
\end{bmatrix}
\] |
| \(y = -1\) | \(-\frac{1}{12}R_2 \rightarrow R_2\) | \[
\begin{bmatrix}
1 & 3 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & -10 & -1 & 11
\end{bmatrix}
\] |
The solution to our system is therefore \(x = 3, y = -1 \) and \(z = -1 \).

Back to our opening problem! A business is sponsoring grants for three different projects: scholarships for employees, public service projects, and remodeling of its storefronts. Each of the store locations in Mathtown made requests for funds with the relative amounts requested by each location distributed as shown in the following table:

<table>
<thead>
<tr>
<th>Project</th>
<th>East</th>
<th>West</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarships</td>
<td>50%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>Public Service</td>
<td>20%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>Remodeling</td>
<td>30%</td>
<td>40%</td>
<td>20%</td>
</tr>
</tbody>
</table>

The corporate office has decided to grant $100,000 for the projects, and they decided to distribute it with 43% to scholarships, 28% to public service and 29% to remodeling. How much money will each location receive in grants?

Rewrite your system of equations from earlier in this lesson:

\[
\begin{align*}
0.5x + 0.3y + 0.4z &= 43,000 \\
0.2x + 0.3y + 0.4z &= 28,000 \\
0.3x + 0.4y + 0.2z &= 29,000
\end{align*}
\]

We can represent this system using the following systems of linear equations:

\[
\begin{bmatrix}
0.5 & 0.3 & 0.4 \\
0.2 & 0.3 & 0.4 \\
0.3 & 0.4 & 0.2
\end{bmatrix}
\begin{bmatrix}
x \\ y \\ z
\end{bmatrix}
=
\begin{bmatrix}
43,000 \\ 28,000 \\ 29,000
\end{bmatrix}
\]

The augmented matrix for this system is:
\[
\begin{bmatrix}
0.5 & 0.3 & 0.4 & 43000 \\
0.2 & 0.3 & 0.4 & 28000 \\
0.3 & 0.4 & 0.2 & 29000 \\
\end{bmatrix}
\]

Using elementary row operations, we find that
\[
\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix} \approx
\begin{bmatrix}
50,000 \\
20,000 \\
30,000 \\
\end{bmatrix}
\]

So, $50,000$ goes to the East location, $20,000$ goes to the West location, and $30,000$ goes to the South location.

Case 2: There is no solution.

Consider the system of equations:
\[
\begin{align*}
2x - y + z &= 1 \\
3x + 2y - 4z &= 4 \\
-6x + 3y - 3z &= 2
\end{align*}
\]

Augmented matrix:
\[
\begin{bmatrix}
2 & -1 & 1 & 1 \\
3 & 2 & -4 & 4 \\
-6 & 3 & -3 & 2 \\
\end{bmatrix}
\]

Using row operation $R_3 + 3R_1 \rightarrow R_3$, we get
\[
\begin{bmatrix}
2 & -1 & 1 & 1 \\
3 & 2 & -4 & 4 \\
0 & 0 & 0 & 5 \\
\end{bmatrix}
\]

We note that the third row in the augmented matrix is a false statement, so there is no solution to this system.

Case 3: There is an infinite number of solutions.

Consider the system of equations:
\[
\begin{align*}
x - y + 2z &= -3 \\
4x + 4y - 2z &= 1 \\
-2x + 2y - 4z &= 6
\end{align*}
\]

Augmented matrix:
\[
\begin{bmatrix}
1 & -1 & 2 & -3 \\
4 & 4 & -2 & 1 \\
-2 & 2 & -4 & 6 \\
\end{bmatrix}
\]
Using row operations $R_2 - 4R_1 \rightarrow R_2$ and $R_3 + 2R_1 \rightarrow R_3$, we get \[
\begin{bmatrix}
1 & -1 & 2 & -3 \\
0 & 8 & -10 & 13 \\
0 & 0 & 0 & 0
\end{bmatrix}.
\]

This represents a system that leaves us with 2 equations and 3 unknowns. So, we are unable to solve for one variable without expressing it in terms of another. This gives us an infinite number of solutions.

Exercises

For each of the following problems, identify your variables and write a system of equations to represent the problem. Then use matrices to solve the system.

1. The Frodo Farm has 500 acres of land allotted for cultivating corn and wheat. The cost of cultivating corn and wheat is $42 and $30 per acre, respectively. Mr. Frodo has $18,600 available for cultivating these crops. If he wants to use all the allotted land and his entire budget for cultivating these two crops, how many acres of each crop should he plant? (Adapted from Finite Mathematics, Tan p. 93 #51)

Let $x = \text{number of acres of corn}$

$y = \text{number of acres of wheat}$

$42x + 30y = 18600$

$x + y = 500$

Augmented matrix:

$$
\begin{bmatrix}
42 & 30 & 18600 \\
1 & 1 & 500
\end{bmatrix}
$$

Solution: $x = 300, y = 200$

300 acres of corn and 200 acres of wheat should be cultivated.

2. The Coffee Cart sells a blend made with two different coffees, one costing $2.50 per pound, and the other costing $3.00 per pound. If the blended coffee sells for $2.80 per pound, how much of each coffee is used to obtain the blend? (Assume that the weight of the coffee blend is 100 pounds.) (Adapted from Finite Mathematics, Tan p. 93 #53)

Let $x = \text{number of pounds of $2.50 coffee}$

$y = \text{number of pounds of $3.00 coffee}$

\[
2.50x + 3.00y = 280 \\
x + y = 100
\]

Augmented matrix:
\[
\begin{bmatrix}
2.5 & 3 & | & 280 \\
1 & 1 & | & 100
\end{bmatrix}
\]

Solution: \(x = 40, \ y = 60 \)

40 lbs of Coffee 1 should be blended with 60 lbs of Coffee 2 to make the proper blend.

3. The Maple Movie Theater has a seating capacity of 900 and charges $2 for children, $3 for students, and $4 for adults. At a screening with full attendance last week, there were half as many adults as children and students combined. The receipts totaled $2800. How many adults attended the show? (Adapted from *Finite Mathematics*, Tan p. 97 #60)

Let \(x = \) number of children who attended the show
\(y = \) number of students who attended the show
\(z = \) number of adults who attended the show

\[
x + y + z = 2800 \\
2x + 3y + 4z = 900 \\
x + y - 2z = 0
\]

Augmented matrix:
\[
\begin{bmatrix}
1 & 1 & 1 & | & 2800 \\
2 & 3 & 4 & | & 900 \\
1 & 1 & -2 & | & 0
\end{bmatrix}
\]

Solution: \(x = 200, \ y = 400, \ z = 300 \)

200 children, 400 students, and 300 adults attended.

4. The Toolies have a total of $100,000 to be invested in stocks, bonds, and a money market account. The stocks have a rate of return of 12% per year, while bonds pay 8% per year, and the money market account pays 4% per year. They have decided that the amount invested in stocks should be equal to the difference between the amount invested in bonds and 3 times the amount invested in the money market account. How should the Toolies allocate their resources if they require an annual income of $10,000 from their investments? (Adapted from *Finite Mathematics*, Tan p. 106 #36)

Let \(x = \) amount allocated to stocks
\(y = \) amount allocated to bonds
\(z = \) amount allocated to a money market account

\[
x + y + z = 100,000 \\
.12x + .08y + .04z = 10,000 \\
x - y + 3z = 0
\]
\[
\begin{bmatrix}
1 & 1 & 1 \\
.12 & .08 & .04 \\
1 & -1 & 3
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} =
\begin{bmatrix}
100,000 \\
10,000 \\
0
\end{bmatrix}
\]

Augmented matrix:
\[
\begin{bmatrix}
1 & 1 & 1 & 100,000 \\
.12 & .08 & .04 & 10,000 \\
1 & -1 & 3 & 0
\end{bmatrix}
\]

Solution: \(x = 50,000 \), \(y = 50,000 \), \(z = 0 \)

$50,000 should be put into the stock market, $50,000 in bonds, and no investment should be made in a Money Market Account.
Lesson 4: Exploring X-Ray Imaging through Puzzles

Lesson Plan

Teacher: Subject: Math

Standard
NC.M4.N.2.1 Execute procedures of addition, subtraction, multiplication, and scalar multiplication on matrices

PC.N.2.1 Execute the sum and difference algorithms to combine matrices of appropriate dimensions; PC.N.2.2 Execute associative and distributive properties to matrices; PC.N.2.3 Execute commutative property to add matrices;

PC.N.2.4 Execute properties of matrices to multiply a matrix by a scalar;

DCS.N.1.1 Implement procedures of addition, subtraction, multiplication and scalar multiplication on matrices.

DCS.N.2.2 Interpret solutions found using matrix operations in context

Topic/Day: Puzzles and X-Ray Imaging

Content Objective: Use logic to complete Nonograms and Kakuro games that relate to X-Ray imaging

Materials Needed: Games Printed, Paper, Article: https://plus.maths.org/content/saving-lives-mathematics-tomography

~85 minutes

<table>
<thead>
<tr>
<th>Time</th>
<th>Student Does</th>
<th>Teacher Does</th>
</tr>
</thead>
</table>
| **Warm Up**
Elicit/Engage | Build relevance through a problem
Try to find out what your students already know
Get them interested | ~30 mins | Student completes the given puzzles
Actively monitor the students and their progress.
Help students when needed but encourage them to utilize each other to work through any difficulties that they may run into. |

| **Explore**
Connectivity to build understanding of concepts | Allow for collaboration consider heterogeneous groups | ~30 mins | Complete a KWL chart about x-rays.
Read the article and do a Think, Pair Share with the article.
Observe and ask/answer questions as needed. |
<table>
<thead>
<tr>
<th>Move deliberately from concrete to abstract</th>
<th>Explain</th>
<th>Extend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply scaffolding & personalization</td>
<td>Participates in discussion around a directed interactive lecture.</td>
<td>Students should complete the challenge puzzles</td>
</tr>
<tr>
<td></td>
<td>End the discussion by playing “Guess my Square” (located in the same document). Discuss how there are multiple answers that can be considered correct for the game.</td>
<td>If you have a highflyer that is easily completed the given puzzles, have some of the challenge puzzles on hand for them to work on.</td>
</tr>
<tr>
<td></td>
<td>Gives guided notes around the article relating to the mathematics.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The optional Milk Delivery Demonstration could go here.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When the students are playing “Guess my Square” they should break into teams. You can have them compete locally at their already assigned groups, or you can choose to break the class up into larger teams.</td>
<td></td>
</tr>
</tbody>
</table>

Games KEY

Nonogram and Kakuro Puzzles

Answer Key

Solve the following Nonogram puzzles. Nonograms are picture logic puzzles in which cells in a grid must be colored or left blank according to the numbers at the side of the grid to reveal a hidden picture. For example: 1 5 2 means 1 square, 5 squares, and 2 squares, in this order, separated by one or more spaces between them.

Example:

```
<table>
<thead>
<tr>
<th>4</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
```

Name: __________________________
Date: ______________ Period: _______

1)
Solve the following Kakuro puzzles. Each puzzle consists of a blank grid with sum-clues in various places. The object is to fill all empty squares using numbers 1 to 9 so the sum of each horizontal block equals the clue on its left, and the sum of each vertical block equals the clue on its top. In addition, no number may be used in the same block more than once.
Example:

6)

7)

8)

9)

10)

Challenge Problems!

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

31)

32)

33)

34)

35)

36)

37)

38)

39)

40)

41)

42)

43)

44)

45)

46)

47)

48)

49)

50)
Article

Saving Lives: the mathematics of tomography

: https://plus.maths.org/content/saving-lives-mathematics-tomography

Ideas to implement article

- KWL-have students create a table on their paper of 3 columns
 - K-What do students already know about X-rays and Imaging
 - W-What do students want to know
 - L-What did students learn from the article
- Jigsaw-break the article into pieces by paragraph and have groups read it a paragraph at a time and discuss to keep students from rushing ahead and missing important details.
Lesson 4: X-Ray Notes

X-Rays and Mathematics

When we first think of imaging we probably think of cameras and photography. There are lots of places imaging is used: our eyes, cameras, X-Rays, CT, MRI, and Ultrasound to name a few. Even X-rays have a variety of uses. In addition to medical applications, X-rays are used for security at the airport to be able to see the inside of luggage without having to open each bag or box.

Digital image - a picture composed of pixels

Pixel - one piece of a picture. The word pixel was formed from picture + element

Array of numbers - arranging of numbers in rows and columns

Matrix - an array of numbers that is used to solve problems involving unknown quantities

Who discovered X-rays and why are they called X-Rays?

Wilhelm Rontgen in 1895 and he called them “X” because it was an unknown type of radiation

Tomography – The word comes from Greek where “tomos” means slice or section and “grapho” means to write so it is a way to represent a slice or section of the body or other object.

In the basic version of an X-ray machine, has a source that emits X-rays and a detector collects the X-ray as it passes through the medium of interest (e.g., human bodies) in a straight line. As the X-ray passes through the medium of interest, it encounters “resistance” and lowers in intensity. The degree to which this intensity is reduced depends on the materials it encounters along its straight-line path. Measuring this reduction in intensity can reveal the inner details of the object. Since we can’t open up a person (surgery) every time we need to see inside, imaging allows us to look inside using a model similar to the one below.
Cormack and Hounsfield developed computer assisted tomography and won a joint Nobel Prize for it in 1979. Their crucial insight was that to understand the internal details, they needed to “look” at the object through multiple angles and piece together the details of the human body. This is similar, in spirit, to panorama image which also “stitches” multiple images of the same scenery. Cormack and Hounsfield independently built devices that worked on the above principles building on the mathematical insights of Radon (1887-1956).

Source: https://www.nobelprize.org/prizes/medicine/1979/summary/

The image below shows three examples of how modern X-ray devices use multiple sources and detectors to collect information about the medium. All three give a different perspective of the same image which can help determine more information about the image.
Games related to X-ray imaging

You may have heard of a Sudoku, but in this class we will solve two puzzles related to Sudoku called Kakuro and Nonograms.

How are these puzzles related to x-ray imaging?

When a computer algorithm is generating or reconstructing images using x-ray data, it is trying to solve a puzzle very similar to that a Nonogram or Kakuro. The key similarities are:

- We do not know the internal details (the variables are the values inside).
- We are given some indirect details on how the numbers add up along rows and columns.

However, the rules of the games (Kakuro, nonograms) are designed in such a way that each puzzle, however hard it may seem, has a solution that is unique. Unfortunately, that is where the similarity to reconstructing x-ray images ends. To explain these challenges, first consider the notion of a well-posed problem.

For a problem to be well-posed:
A solution exists
The solution is unique
The solution’s behavior changes continuously with the inputs

If a problem is not well-posed it is called ill-posed.
Unlike puzzles/games what are well-posed, imaging problems tend to be ill-posed, which makes them a lot harder to solve in practice. Two other reasons make x-ray imaging more complicated:

1. The sources and detectors are not perfect, they collect noisy measurements. You may have seen a similar effect when you take photographs in your cellphone cameras in low-light settings.
2. Patients tend to move during imaging. This means in between two sets of x-ray measurements the X-ray scanner is looking at two different “patients.”

These uncertainties make X-ray imaging more complicated but also more interesting. More information about X-ray imaging can be found on this website: https://www.whydomath.org/node/tomography/index.html.

To show the complications involving ill-posed problems, we will play a couple of simple ill-posed games.

Milk Delivery

In the article below milk delivery is discussed starting in paragraph 5. This is an option activity that teachers could demonstrate to help visual and kinesthetic learners understand the ambiguity of X-Ray imaging. https://plus.maths.org/content/saving-lives-mathematics-tomography
Guess My Square

Directions: Fill in the square that is labeled “your square” with digits between 1 and 9. Then sum the columns and rows of your square. Tell the opposing team the sums of the columns and rows only. The opposing team now needs to fill in your square with digits between 1 and 9 to try to guess the numbers that you filled your square with. You will also try to guess your opposing team’s digits. You will put your guess into the square labeled “their square”.

<table>
<thead>
<tr>
<th>Your Square</th>
<th>Their Square</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note to teacher: There are infinite solutions to these squares, and you will want the students to realize that through this activity.
Lesson 5: Solving ill-posed puzzles

Standard
NC.M4.N.2.1 Execute procedures of addition, subtraction, multiplication, and scalar multiplication on matrices

PC.N.2.1 Execute the sum and difference algorithms to combine matrices of appropriate dimensions; PC.N.2.2 Execute associative and distributive properties to matrices; PC.N.2.3 Execute commutative property to add matrices;

PC.N.2.4 Execute properties of matrices to multiply a matrix by a scalar;

DCS.N.1.1 Implement procedures of addition, subtraction, multiplication and scalar multiplication on matrices.

DCS.N.2.2 Interpret solutions found using matrix operations in context

Topic/Day: Finding solutions to ill posed problems

Content Objective: Use the process of rays in an X-Ray to solve equations

Vocabulary: Gaussian Elimination, Matrix, Vector

Materials Needed: Guided Notes, Student Worksheet

<table>
<thead>
<tr>
<th>Time</th>
<th>Student Does</th>
<th>Teacher Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>~85 mins</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warm Up
Elicit/Engage
Build relevance through a problem
Try to find out what your students already know
Get them interested

<table>
<thead>
<tr>
<th>Time</th>
<th>Student Does</th>
<th>Teacher Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>~10 mins</td>
<td>Students should work on answering the posed questions about Gaussian Elimination as review.</td>
<td>Encourage students to refer back to their notes about Gaussian Elimination to answer the posed questions.</td>
</tr>
</tbody>
</table>

Explain
Personalize/Differentiate as needed
Adjust along teacher/student centered continuum
Provide vocabulary
Clarify understandings

<table>
<thead>
<tr>
<th>Time</th>
<th>Student Does</th>
<th>Teacher Does</th>
</tr>
</thead>
<tbody>
<tr>
<td>~30 mins</td>
<td>Students will complete the Lesson 5 - guided notes about X-Rays and Linear Algebra</td>
<td>Gives guided notes and walk them through. Be sure to let them try some of the notes on their own.</td>
</tr>
</tbody>
</table>
Warm Up-Key

X-Ray Day 2 – Warm Up/Engage

Name: ______________________________

Date: ________________ Period: ________

Answer Key

What are the 3 Elementary Row Operations that you can use while completing Gaussian Elimination?

1) **Exchanging two rows**

2) **Multiplying a row by a nonzero scalar**

3) **Adding a multiple of one row to another**

What are the 3 possible conclusions that you can make about solving a system of equations?

1) **There exists one unique solution**
2) There is no solution

3) There is an infinite number of solutions

During Gaussian Elimination, how do you determine which case you have ended up with?

1) You end up with 1s on the main diagonal of the first square portion of the matrix

2) You end with leading 0s on the bottom row and a constant in the last column of the bottom row/or any other row (e.g., [0 0 … 0 | 5])

3) Most often, you end up with all zeros on the bottom row/another row (e.g., [0 0 … 0 | 0])

Guided Notes Key

X-Rays – Day 2 Guided Notes
Name: ________________________________

Answer Key
Date: ____________________ Period: ________

In the previous lesson, we played the “Guess my Square” game where we discovered that there are more than one solution sets to our squares. Today we are going to look at how we can use a similar approach and result in one, unique solution. This approach that we will look at today is how the rays in x-rays move through the body to result in the best image outcome possible.

Given the information in the diagram below, write the system of equations that corresponds.

\[
\begin{align*}
f_1 + f_3 &= b_1 \\
f_2 + f_4 &= b_2 \\
f_1 + f_2 &= b_3 \\
f_3 + f_4 &= b_4
\end{align*}
\]
If we think about the above image as matrix \(x \) and \(x = \begin{bmatrix} f_1 & f_2 & f_3 & f_4 \end{bmatrix} \), the first thing we want to do it vectorize this matrix.

\[
x = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix}
\]

Now, write the matrix-vector equation in the form \(Ax=b \).

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
\end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}
\]

Consider the true solution of \(x = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \). What does this matrix look like if we vectorize it?

\[
x = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}
\]

Now, write down the corresponding vector \(b \)

\[
b = \begin{bmatrix} 4 \\ 6 \\ 3 \\ 7 \end{bmatrix}
\]

Using vector \(b \) and matrix \(A \) from above, write the augmented matrix.

\[
\begin{bmatrix} 1 & 0 & 1 & 0 & | & 4 \\
0 & 1 & 0 & 1 & | & 6 \\
1 & 1 & 0 & 0 & | & 3 \\
0 & 0 & 1 & 1 & | & 7 \\
\end{bmatrix}
\]

Now we solve for vector \(x \) by using Gaussian Elimination.

1) \[
\begin{bmatrix} 1 & 0 & 1 & 0 & | & 4 \\
0 & 1 & 0 & 1 & | & 6 \\
1 & 1 & 0 & 0 & | & 3 \\
0 & 0 & 1 & 1 & | & 7 \\
\end{bmatrix} \xrightarrow{-R_1+R_3}
\]

2) \[
\begin{bmatrix} 1 & 0 & 1 & 0 & | & 4 \\
0 & 1 & 0 & 1 & | & 6 \\
0 & 0 & -1 & 0 & | & -1 \\
0 & 0 & 1 & 1 & | & 7 \\
\end{bmatrix} \xrightarrow{R_3-R_2}
\]
Set up the new system of equations from your final matrix in your Gaussian Elimination.

\[
\begin{align*}
\begin{bmatrix}
1 & 0 & 1 & 0 & | & 4 \\
0 & 1 & 0 & 1 & | & 6 \\
0 & 0 & -1 & -1 & | & -7 \\
0 & 0 & 1 & 1 & | & 7 \\
\end{bmatrix} & \leftrightarrow -R_3 \\
\begin{bmatrix}
1 & 0 & 1 & 0 & | & 4 \\
0 & 1 & 0 & 1 & | & 6 \\
0 & 0 & 1 & 1 & | & 7 \\
0 & 0 & 0 & 0 & | & 0 \\
\end{bmatrix} & \leftrightarrow R_4-R_3 \\
\begin{bmatrix}
1 & 0 & 1 & 0 & | & 4 \\
0 & 1 & 0 & 1 & | & 6 \\
0 & 0 & 1 & 1 & | & 7 \\
1 & 0 & 1 & 0 & | & 4 \\
0 & 1 & 0 & 1 & | & 6 \\
0 & 0 & 1 & 1 & | & 7 \\
0 & 0 & 0 & 0 & | & 0 \\
\end{bmatrix}
\end{align*}
\]

What does the \(0 = 0 \) tell you about the system of equations?

There is no unique solution to this system of equations.

Therefore, according to our rules of Gaussian Elimination, we will end up with infinite solutions.

Since you are not able to solve for a unique solution, instead solve for \(f_1, f_2, \text{and} f_3 \) in terms of \(f_4 \).

Solve for \(f_3 \):

\[
\begin{align*}
f_3 + f_4 & = 7 \\
-f_4 & = -f_4 \\
\end{align*}
\]

\[f_3 = 7 - f_4 \]

Solve for \(f_2 \):

\[
\begin{align*}
f_2 + f_4 & = 6 \\
-f_4 & = -f_4 \\
\end{align*}
\]

\[f_2 = 6 - f_4 \]

Solve for \(f_1 \):

\[
\begin{align*}
f_1 + f_3 & = 4 \\
(7 - f_4) + f_1 & = 4 \\
\end{align*}
\]

\[f_1 = 4 \]
\[-(7 - f_4) \quad -(7 - f_4)\]
\[f_1 \quad = \quad 4 \quad -7 + f_4\]
\[f_4 \quad = \quad -3 \quad +f_4\]

Refer to the “Guess my Square” game from yesterday. What value of \(f_4\) would make your team guess the opposing team’s answer?

Answer will vary

Making the solution unique

Since the above system gives you infinite solutions, we must now add in more rays. Given the information in the new diagram below, write the new system of equations that corresponds.

\[
\begin{align*}
f_1 + f_3 & = b_1 \\
f_2 + f_4 & = b_2 \\
f_1 + f_2 & = b_3 \\
f_3 + f_4 & = b_4 \\
f_1 + f_4 & = b_5
\end{align*}
\]

Write the matrix-vector equation in the form \(Ax=b\).

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
b_4 \\
b_5
\end{bmatrix}
\]

If matrix \(x = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}\), write vector \(x\).

\[
x = \begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix}
\]
Now, write down the corresponding vector b.

$$ b = \begin{bmatrix} 4 \\ 6 \\ 3 \\ 7 \\ 5 \end{bmatrix} $$

Using the new vector b and new matrix A from above, write the augmented matrix.

$$ \begin{bmatrix} 1 & 0 & 1 & 0 & 4 \\ 0 & 1 & 0 & 1 & 6 \\ 1 & 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 1 & 7 \\ 1 & 0 & 0 & 1 & 5 \end{bmatrix} $$

Now prove that there is a unique solution and solve for vector x by using Gaussian Elimination.

1)

$$ \begin{bmatrix} 1 & 0 & 1 & 0 & 4 \\ 0 & 1 & 0 & 1 & 6 \\ 1 & 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 1 & 7 \\ 1 & 0 & 1 & 0 & 4 \\ 0 & 1 & 0 & 1 & 6 \end{bmatrix} \xrightarrow{R_4\leftrightarrow R_3} \begin{bmatrix} 1 & 0 & 1 & 0 & 4 \\ 0 & 1 & 0 & 1 & 6 \\ 1 & 0 & 0 & 1 & 5 \\ 0 & 0 & 1 & 1 & 7 \\ 1 & 0 & 0 & 1 & 4 \\ 0 & 1 & 0 & 1 & 6 \end{bmatrix} $$

2)

$$ \begin{bmatrix} 1 & 0 & 1 & 0 & 4 \\ 0 & 1 & 0 & 1 & 6 \\ 1 & 0 & 0 & 1 & 5 \\ 0 & 0 & 1 & 1 & 7 \\ 1 & 1 & 0 & 0 & 3 \\ 1 & 0 & 0 & 1 & 4 \\ 0 & 1 & 0 & 1 & 6 \end{bmatrix} \xrightarrow{R_1-R_4} \begin{bmatrix} 1 & 0 & 1 & 0 & 4 \\ 0 & 1 & 0 & 1 & 6 \\ 0 & 0 & 1 & 1 & 7 \\ 0 & -1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 5 \end{bmatrix} $$

3)

$$ \begin{bmatrix} 1 & 0 & 1 & 0 & 4 \\ 0 & 1 & 0 & 1 & 6 \\ 0 & 0 & 1 & 1 & 7 \\ 0 & -1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 5 \end{bmatrix} \xrightarrow{R_2+R_4} \begin{bmatrix} 1 & 0 & 1 & 0 & 4 \\ 0 & 1 & 0 & 1 & 6 \\ 0 & 0 & 1 & 1 & 7 \\ 0 & -1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 5 \end{bmatrix} \xrightarrow{R_3-R_4} \begin{bmatrix} 1 & 0 & 1 & 0 & 4 \\ 0 & 1 & 0 & 1 & 6 \\ 0 & 0 & 1 & 1 & 7 \\ 0 & -1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 5 \end{bmatrix} $$
Write the new system of equations from the final matrix in your Gaussian Elimination.

\[
\begin{align*}
f_1 + f_3 &= 4 \\
f_2 + f_4 &= 6 \\
f_3 + f_4 &= 7 \\
f_4 &= 4 \\
0 &= 0
\end{align*}
\]

Are you able to solve this system of equations? Why?
Yes, because we have 4 equations with 4 variables to solve for, so the fifth equation of 0=0 doesn’t affect us trying to solve for a unique solution.
If yes, solve the system of equations.

Solve for \(f_4 \):
\[
\begin{align*}
f_4 &= 4
\end{align*}
\]

Solve for \(f_3 \):
\[
\begin{align*}
f_3 + 4 &= 7 \\
-4 &- 4
\end{align*}
\]
\[
\begin{align*}
f_3 &= 3
\end{align*}
\]

Solve for \(f_2 \):
\[
\begin{align*}
f_2 + 4 &= 6 \\
-4 &- 4
\end{align*}
\]
\[
\begin{align*}
f_2 &= 2
\end{align*}
\]

Solve for \(f_1 \):
\[
\begin{align*}
f_1 + 3 &= 4 \\
-3 &- 3
\end{align*}
\]
\[
\begin{align*}
f_1 &= 1
\end{align*}
\]

☆ Final Answer \(x = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \) (Note: You should get the same vector \(x \) that we have above)
Given the information in the diagram below, write the system of equations that corresponds.

\[
\begin{align*}
x_1 + x_3 &= b_1 \\
x_2 + x_4 + x_5 &= b_2 \\
x_1 + x_2 &= b_3 \\
x_3 + x_4 &= b_4 \\
x_5 &= b_5
\end{align*}
\]

Write the matrix-vector equation in the form \(Ax = b \).

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
b_4 \\
b_5
\end{bmatrix}
\]

If \(x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} \), write down the corresponding vector \(b \).

\[
b = \begin{bmatrix}
4 \\
11 \\
3 \\
7 \\
5
\end{bmatrix}
\]

Using vector \(b \) and matrix \(A \) from above, write the augmented matrix.

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
1 & 1 & 0 & 0 & 0 & | & 3 \\
0 & 0 & 1 & 1 & 0 & | & 7 \\
0 & 0 & 0 & 0 & 1 & | & 5
\end{bmatrix}
\]
Now prove that there is a unique solution and solve for vector x by using Gaussian Elimination.

1) \[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix}
\]

2) \[
\begin{bmatrix}
0 & 0 & 1 & 1 & 0 & | & 7 \\
1 & 1 & 0 & 0 & 0 & | & 3 \\
0 & 0 & 0 & 0 & 1 & | & 5 \\
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix}
\]

3) \[
\begin{bmatrix}
0 & 0 & 1 & 1 & 0 & | & 7 \\
0 & 1 & 0 & 1 & 0 & | & 1 \\
0 & 0 & 0 & 0 & 1 & | & 5 \\
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix}
\]

4) \[
\begin{bmatrix}
0 & 0 & 1 & 1 & 0 & | & 7 \\
0 & 0 & 1 & 1 & 1 & | & 12 \\
0 & 0 & 0 & 0 & 1 & | & 5 \\
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix}
\]

5) \[
\begin{bmatrix}
0 & 0 & 1 & 1 & 0 & | & 7 \\
0 & 0 & 0 & 0 & 0 & | & 5 \\
0 & 0 & 0 & 0 & 1 & | & 0 \\
0 & 1 & 0 & 1 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix}
\]

6) \[
\begin{bmatrix}
0 & 0 & 1 & 1 & 0 & | & 7 \\
0 & 0 & 0 & 0 & 0 & | & 5 \\
0 & 0 & 0 & 0 & 1 & | & 5 \\
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix}
\]

7) \[
\begin{bmatrix}
0 & 0 & 1 & 1 & 0 & | & 7 \\
0 & 0 & 0 & 0 & 0 & | & 5 \\
0 & 0 & 0 & 0 & 0 & | & 0 \\
\end{bmatrix}
\]
As you can see, this will give you infinite solutions. Why did this system give you infinite solutions?

When the last row of the matrix is all zeros, that means that you will have infinite solutions.

Since the above system gives you infinite solutions, we must now add in more rays. Given the information in the new diagram below, write the new system of equations that corresponds.

\[
\begin{align*}
\mathbf{x}_1 + \mathbf{x}_3 &= \mathbf{b}_1 \\
\mathbf{x}_2 + \mathbf{x}_4 &+ \mathbf{x}_5 = \mathbf{b}_2 \\
\mathbf{x}_1 &+ \mathbf{x}_2 = \mathbf{b}_3 \\
\mathbf{x}_3 + \mathbf{x}_4 &= \mathbf{b}_4 \\
\mathbf{x}_1 &+ \mathbf{x}_4 = \mathbf{b}_5
\end{align*}
\]

Write the matrix-vector equation in the form \(\mathbf{A}\mathbf{x} = \mathbf{b} \).

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}_1 \\
\mathbf{x}_2 \\
\mathbf{x}_3 \\
\mathbf{x}_4 \\
\mathbf{x}_5
\end{bmatrix}
=
\begin{bmatrix}
\mathbf{b}_1 \\
\mathbf{b}_2 \\
\mathbf{b}_3 \\
\mathbf{b}_4 \\
\mathbf{b}_5
\end{bmatrix}
\]

If \(\mathbf{x} = \begin{bmatrix}
1 \\
2 \\
3 \\
4 \\
5
\end{bmatrix} \), write down the corresponding vector \(\mathbf{b} \).

\[
\mathbf{b} =
\begin{bmatrix}
4 \\
11 \\
3 \\
7 \\
5
\end{bmatrix}
\]

Using the new vector \(\mathbf{b} \) and new matrix \(\mathbf{A} \) from above, write the augmented matrix.

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
1 & 1 & 0 & 0 & 0 & | & 3 \\
0 & 0 & 1 & 1 & 0 & | & 7 \\
1 & 0 & 0 & 1 & 0 & | & 5
\end{bmatrix}
\]
Now prove that there is a unique solution and solve for vector x by using Gaussian Elimination.

1) \[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
1 & 1 & 0 & 0 & 0 & | & 3 \\
0 & 0 & 1 & 1 & 0 & | & 7 \\
1 & 0 & 0 & 1 & 0 & | & 5 \\
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix} \leftrightarrow R_4 \leftrightarrow R_3
\]

2) \[
\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & | & 7 \\
1 & 1 & 0 & 0 & 0 & | & 3 \\
1 & 0 & 0 & 1 & 0 & | & 5 \\
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix} \leftrightarrow R_1 - R_4
\]

3) \[
\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & | & 7 \\
0 & -1 & 1 & 0 & 0 & | & 1 \\
1 & 0 & 0 & 1 & 0 & | & 5 \\
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix} \leftrightarrow R_2 + R_4
\]

4) \[
\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & | & 7 \\
0 & 0 & 1 & 1 & 1 & | & 12 \\
1 & 0 & 0 & 1 & 0 & | & 5 \\
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix} \leftrightarrow R_3 - R_4
\]

5) \[
\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & | & 7 \\
0 & 0 & 0 & 0 & -1 & | & -5 \\
1 & 0 & 0 & 1 & 0 & | & 5 \\
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix} \leftrightarrow R_5 \leftrightarrow -R_4
\]

6) \[
\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & | & 7 \\
1 & 0 & 0 & 1 & 0 & | & 5 \\
0 & 0 & 0 & 0 & 1 & | & 5 \\
1 & 0 & 1 & 0 & 0 & | & 4 \\
0 & 1 & 0 & 1 & 1 & | & 11 \\
\end{bmatrix} \leftrightarrow R_1 - R_4
\]

7) \[
\begin{bmatrix}
1 & 0 & 1 & 1 & 0 & | & 7 \\
0 & 0 & 1 & -1 & 0 & | & -1 \\
0 & 0 & 0 & 0 & 1 & | & 5 \\
\end{bmatrix} \leftrightarrow R_3 - R_4
\]

Write and solve the new system of equations from the final matrix in your Gaussian Elimination.

\[
\begin{align*}
\begin{array}{ccc|c}
1 & 0 & 1 & 0 & 0 & 4 \\
0 & 1 & 0 & 1 & 1 & 11 \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
8) & \quad \begin{array}{ccc|c}
0 & 0 & 1 & 1 & 0 & 7 \\
0 & 0 & 0 & 2 & 0 & 8 \\
0 & 0 & 0 & 0 & 1 & 5 \\
1 & 0 & 1 & 0 & 0 & 4 \\
\end{array}
\Rightarrow \frac{1}{2} \text{ R}_4
\end{align*}
\]

\[
\begin{align*}
9) & \quad \begin{array}{ccc|c}
0 & 0 & 1 & 1 & 0 & 7 \\
0 & 0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 0 & 1 & 5 \\
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{Write and solve the new system of equations from the final matrix in your Gaussian Elimination.}
\end{align*}
\]

\[
\begin{align*}
& x_1 + x_3 = 4 \\
& x_2 + x_4 + x_5 = 11 \\
& x_3 + x_4 = 7 \\
& x_4 = 4 \\
& x_5 = 5
\end{align*}
\]

Solve for \(x_3\):

\[
\begin{align*}
x_3 + 4 &= 7 \\
-4 &= -4
\end{align*}
\]

\[
x_3 = 3
\]

Solve for \(x_2\):

\[
\begin{align*}
x_2 + 4 + 5 &= 11 \\
x_2 + 9 &= 11 \\
-9 &= -9
\end{align*}
\]

\[
x_2 = 2
\]

Solve for \(x_1\):

\[
\begin{align*}
x_1 + 3 &= 4 \\
-3 &= -3
\end{align*}
\]

\[
x_1 = 1
\]

\[
\begin{array}{c|c|c|c|c}
1 & 2 & 3 & 4 & 5
\end{array}
\]

\[
\text{Final Answer: } x = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} \quad \text{(Note: You should get the same vector } x \text{ that we have above)}
\]
Exit Ticket

X-Ray Day 2 – Exit Ticket

Name: _________________________________
Date: __________________ Period: ________

Create your own square image and rays below (this image must be different from one used in class today):

Will this image produce a unique solution? Why?
References and Additional Readings

Appendices Lesson Materials – Student Versions

Lesson 1 - Guided Notes - Student Version

- Student version begins on next page
Matrix Addition, Subtraction and Scalar Multiplication

A university is taking inventory of the books they carry at their two biggest bookstores. The East Campus bookstore carries the following books:

Hardcover: Textbooks-5280; Fiction-1680; NonFiction-2320; Reference-1890

Paperback: Textbooks-1930; Fiction-2705; NonFiction-1560; Reference-2130

The West Campus bookstore carries the following books:

Hardcover: Textbooks-7230; Fiction-2450; NonFiction-3100; Reference-1380

Paperback: Textbooks-1740; Fiction-2420; NonFiction-1750; Reference-1170

In order to work with this information, we can represent the inventory of each bookstore using an organized array of numbers known as a matrix.

Definitions: A ________ is a rectangular table of entries and is used to organize data in a way that can be used to solve problems. The following is a list of terms used to describe matrices:

- A matrix’s __________________________ is written by listing the number of rows “by” the number of columns.
- The values in a matrix, \(A \), are referred to as ____________ or ______________. The entry in the \(m^{th} \) row and \(n^{th} \) column is written as \(a_{mn} \).
- A matrix is _____________ if it has the same number of rows as it has columns.
- If a matrix has only one row, then it is a row ______________. If it has only one column, then the matrix is a column ______________.
- The __________________ of a matrix, \(A \), written \(A^T \), switches the rows with the columns of \(A \) and the columns with the rows.
- Two matrices are ______________ if they have the same size and the same corresponding entries.
The inventory of the books at the East Campus bookstore can be represented with the following 2 x 4 matrix:

\[
E = \begin{bmatrix}
T & F & N & R \\
\text{Hardback} & \text{Paperback}
\end{bmatrix}
\]

Similarly, the West Campus bookstore's inventory can be represented with the following matrix:

\[
W = \begin{bmatrix}
T & F & N & R \\
\text{Hardback} & \text{Paperback}
\end{bmatrix}
\]

Adding and Subtracting Matrices

In order to add or subtract matrices, they must first be of the same ______________________.

The result of the addition or subtraction is a matrix of the same size as the matrices themselves, and the entries are obtained by adding or subtracting the elements in corresponding positions.

In our campus bookstores example, we can find the total inventory between the two bookstores as follows:

\[
E + W = \begin{bmatrix}
T & F & N & R \\
\text{Hardback} & \text{Paperback}
\end{bmatrix} + \begin{bmatrix}
T & F & N & R \\
\text{Hardback} & \text{Paperback}
\end{bmatrix}
\]

\[
E + W = \begin{bmatrix}
T & F & N & R \\
\text{Hardback} & \text{Paperback}
\end{bmatrix}
\]
Question: Is matrix addition commutative (e.g., $A + B = B + A$)? Why or why not?

Question: Is matrix subtraction commutative (e.g., $A - B = B - A$)? Why or why not?

Question: Is matrix addition associative (e.g., $(A + B) + C = A + (B + C)$)? Why or why not?

Question: Is matrix subtraction associative (e.g., $(A - B) - C = A - (B - C)$)? Why or why not?

Scalar Multiplication

Multiplying a matrix by a constant (or scalar) is as simple as multiplying each entry by that number! Suppose the bookstore manager in East Campus wants to double his inventory. He can find the number of books of each type that he would need by simply multiplying the matrix E by the scalar (or constant) 2. The result is as follows:

$$2E = 2 \times \begin{bmatrix} T & F & N & R \\ \end{bmatrix} = \begin{bmatrix} \text{Hardback} \\ \text{Paperback} \end{bmatrix}$$
Exercises: Consider the following matrices:

\[A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & -4 & 3 \\ -6 & 1 & 8 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 8 & -6 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 6 & -21 \\ 2 & 4 & -9 \\ 5 & -7 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix} \]

Find each of the following, or explain why the operation cannot be performed:

b. \(A + B \)
b. \(B - A \)
c. \(A - C \)
d. \(C - A \)
c. \(5B \)
f. \(-A + 4C \)
g. \(B - D \)
h. \(2C - 6A \)
i. \(B^T + D \)
Lesson 2 - Guided Notes – Student Version

- Student version begins on next page
Matrix Multiplication

The Metropolitan Opera is planning its last cross-country tour. It plans to perform *Carmen* and *La Traviata* in Atlanta in May. The person in charge of logistics wants to make plane reservations for the two troupes. *Carmen* has 2 stars, 25 other adults, 5 children, and 5 staff members. *La Traviata* has 3 stars, 15 other adults, and 4 staff members. There are 3 airlines to choose from. Redwing charges round-trip fares to Atlanta of $630 for first class, $420 for coach, and $250 for youth. Southeastern charges $650 for first class, $350 for coach, and $275 for youth. Air Atlanta charges $700 for first class, $370 for coach, and $150 for youth. Assume stars travel first class, other adults and staff travel coach, and children travel for the youth fare.

Use multiplication and addition to find the total cost for each troupe to travel each of the airlines.
It turns out that we can solve problems like these using a matrix operation, specifically **matrix multiplication**!

We first note that matrix multiplication is only defined for matrices of certain sizes. For the product AB of matrices A and B, where A is an $m \times n$ matrix, B must have the same number of rows as A has columns. So, B must have size $_____ \times p$. The product AB will have size $__________$.

Exercises

The following is a set of abstract matrices (without row and column labels):

\[
M = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix} \quad N = \begin{bmatrix} 2 & 4 & 1 \\ 0 & -1 & 3 \\ 1 & 0 & 2 \end{bmatrix} \quad O = \begin{bmatrix} 6 \end{bmatrix}
\]

\[
P = \begin{bmatrix} 0 & \frac{1}{2} \\ -1 & \frac{3}{2} \end{bmatrix} \quad Q = \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} \quad R = \begin{bmatrix} 3 & 1 \\ -1 & 0 \end{bmatrix}
\]

\[
S = \begin{bmatrix} 3 & 1 \\ 1 & 0 \\ 0 & 2 \\ -1 & 1 \end{bmatrix} \quad T = \begin{bmatrix} 1 \\ 2 \\ -3 \\ -4 \end{bmatrix} \quad U = \begin{bmatrix} 4 & 2 & 6 & -1 \\ 5 & 3 & 1 & 0 \\ 0 & 2 & -1 & 1 \end{bmatrix}
\]

List at least 5 orders of pairs of matrices from this set for which the product is defined. State the dimension of each product.
Back to the opera…

Define two matrices that organize the information given:

\[
\begin{bmatrix}
\text{stars} & \text{adults} & \text{children} \\
\text{Carmen} & \text{La Traviata} & \\
\end{bmatrix}
\begin{bmatrix}
\text{stars} \\
\text{adults} \\
\text{children} \\
\end{bmatrix}
\begin{bmatrix}
\text{Red} & \text{South} & \text{Air} \\
\end{bmatrix}
\]

We can multiply these two matrices to obtain the same answers we obtained above, all in one matrix!

\[
\begin{bmatrix}
\text{stars} & \text{adults} & \text{children} \\
\text{Carmen} & \text{La Traviata} & \\
\end{bmatrix}
\cdot
\begin{bmatrix}
\text{stars} \\
\text{adults} \\
\text{children} \\
\end{bmatrix}
\begin{bmatrix}
\text{Red} & \text{South} & \text{Air} \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\text{Red} & \text{South} & \text{Air} \\
\text{Carmen} & \text{La Traviata} & \\
\end{bmatrix}
\]

Carmen/Redwing:

Carmen/Southeastern:

Carmen/Air Atlanta:

La Traviata/Redwing:

La Traviata/Southeastern:

La Traviata/Air Atlanta:
Exercises

3. The K.L. Mutton Company has investments in three states - North Carolina, North Dakota, and New Mexico. Its deposits in each state are divided among bonds, mortgages, and consumer loans. The amount of money (in millions of dollars) invested in each category on June 1 is displayed in the table below.

<table>
<thead>
<tr>
<th></th>
<th>NC</th>
<th>ND</th>
<th>NM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds</td>
<td>13</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Mort.</td>
<td>6</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Loans</td>
<td>29</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

The current yields on these investments are 7.5% for bonds, 11.25% for mortgages, and 6% for consumer loans. Use matrix multiplication to find the total earnings for each state.

4. Several years ago, Ms. Allen invested in growth stocks, which she hoped would increase in value over time. She bought 100 shares of stock A, 200 shares of stock B, and 150 shares of stock C. At the end of each year she records the value of each stock. The table below shows the price per share (in dollars) of stocks A, B, and C at the end of the years 1984, 1985, and 1986.

<table>
<thead>
<tr>
<th></th>
<th>1984</th>
<th>1985</th>
<th>1986</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock A</td>
<td>68.00</td>
<td>72.00</td>
<td>75.00</td>
</tr>
<tr>
<td>Stock B</td>
<td>55.00</td>
<td>60.00</td>
<td>67.50</td>
</tr>
<tr>
<td>Stock C</td>
<td>82.50</td>
<td>84.00</td>
<td>87.00</td>
</tr>
</tbody>
</table>

Calculate the total value of Ms. Allen’s stocks at the end of each year.

3. The Sound Company produces stereos. Their inventory includes four models - the Budget, the Economy, the Executive, and the President models. The Budget needs 50 transistors, 30 capacitors, 7 connectors, and 3 dials. The Economy model needs 65 transistors, 50 capacitors, 9 connectors, and 4 dials. The Executive model needs 85 transistors, 42 capacitors, 10 connectors, and 6 dials. The President model needs 85 transistors, 42 capacitors, 10 connectors, and 12 dials. The daily manufacturing goal in a normal quarter is 10 Budget, 12 Economy, 11 Executive, and 7 President stereos.

a. How many transistors are needed each day? Capacitors? Connectors? Dials?

b. During August and September, production is increased by 40%. How many Budget, Economy, Executive, and President models are produced daily during these months?

c. It takes 5 person-hours to produce the Budget model, 7 person-hours to produce the Economy model, 6 person-hours for the Executive model, and 7 person-hours for the President model. Determine the number of employees needed to maintain the normal production schedule, assuming everyone works an average of 7 hours each day. How many employees are needed in August and September?
4. The president of the Lucrative Bank is hoping for a 21% increase in checking accounts, a 35% increase in savings accounts, and a 52% increase in market accounts. The current statistics on the number of accounts at each branch are as follows:

<table>
<thead>
<tr>
<th>Branch</th>
<th>Checking</th>
<th>Savings</th>
<th>Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northgate</td>
<td>40039</td>
<td>10135</td>
<td>512</td>
</tr>
<tr>
<td>Downtown</td>
<td>15231</td>
<td>8751</td>
<td>105</td>
</tr>
<tr>
<td>South Square</td>
<td>25612</td>
<td>12187</td>
<td>97</td>
</tr>
</tbody>
</table>

What is the goal for each branch in each type of account? (HINT: multiply by a 3×2 matrix with certain nonzero entries on the diagonal and zero entries elsewhere.) What will be the total number of accounts at each branch?
Lesson 3 - Guided Notes - Student Version

- Student version begins on next page
Solving Linear Systems of Equations Using Gaussian Elimination

A business is sponsoring grants for three different projects: scholarships for employees, public service projects, and remodeling of its storefronts. Each of the store locations in Mathtown made requests for funds with the relative amounts requested by each location distributed as shown in the following table:

<table>
<thead>
<tr>
<th>Project</th>
<th>East</th>
<th>West</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarships</td>
<td>50%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>Public Service</td>
<td>20%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>Remodeling</td>
<td>30%</td>
<td>40%</td>
<td>20%</td>
</tr>
</tbody>
</table>

The corporate office has decided to grant $100,000 for the projects, and they decided to distribute it with 43% to scholarships, 28% to public service and 29% to remodeling.

How can we represent this problem with a system of equations?

Let \(x = \)

Let \(y = \)

Let \(z = \)

We therefore have the following system of equations:

\[
\begin{align*}
\text{Example: } & \quad \text{Consider the following system of linear equations (recall this from Algebra II):} \\
& \quad x + 3y = 0 \\
& \quad x + y + z = 1 \\
& \quad 3x - y - z = 11
\end{align*}
\]

We can solve this system by representing it using matrices.
We will name the ________________ matrix $A = \begin{bmatrix} \end{bmatrix}$, the variable vector $X = \begin{bmatrix} \end{bmatrix}$, and the column vector $B = \begin{bmatrix} 0 \\ 1 \\ 11 \end{bmatrix}$. So, our matrix equation (also referred to as a linear system of equations) representing the system can be written as $AX = B$:

One way to solve this system is to use an approach known as

______________________________, or row reduction.

Gaussian Elimination

You may recall from your prior mathematics work that there are three possible conclusions we can make about the solution to a system of equations.

Case 1: There exists one unique solution.
Case 2: There is no solution.
Case 3: There is an infinite number of solutions.

Case 1: There exists one unique solution.

Recall our example from above:
To begin, we write the associated _____________________, which is written in the following form:

\[
\begin{bmatrix}
 & \\
 & \\
& \\
\end{bmatrix}
\]

To apply the method on a matrix, we use ________________________________ to modify the matrix. Our goal is to end up with the _____________________, which is an \(n \times n\) matrix with all 1’s in the main diagonal and zeros elsewhere: \(I = \begin{bmatrix} 1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1 \end{bmatrix}\), on the left side of the augmented matrix.

Our solution to the system of equations will be the resulting matrix on the right side of the augmented matrix. This is because the resulting augmented matrix would represent a system of equations in which each variable could be solved for (if a solution exists).

Elementary Row Operations:

There are three operations that can be applied to modify the matrix and still preserve the solution to the system of equations.

- Exchanging two rows (which represents the switching the listing order of two equations in the system)
- Multiplying a row by a nonzero scalar (which represents multiplying both sides of one of the equations by a nonzero scalar)
- Adding a multiple of one row to another (which represents does not affect the solution, since both equations are in the system)
For our example…

\[x + 3y = 0 \quad R_1 \]
\[x + y + z = 1 \quad R_2 \]
\[3x - y - z = 11 \quad R_3 \]

<table>
<thead>
<tr>
<th>System of equations</th>
<th>Row operation</th>
<th>Augmented matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Back to our opening problem! A business is sponsoring grants for three different projects: scholarships for employees, public service projects, and remodeling of its storefronts. Each of the store locations in Mathtown made requests for funds with the relative amounts requested by each location distributed as shown in the following table:

<table>
<thead>
<tr>
<th>Project</th>
<th>East</th>
<th>West</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarships</td>
<td>50%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>Public Service</td>
<td>20%</td>
<td>30%</td>
<td>40%</td>
</tr>
<tr>
<td>Remodeling</td>
<td>30%</td>
<td>40%</td>
<td>20%</td>
</tr>
</tbody>
</table>

The corporate office has decided to grant $100,000 for the projects, and they decided to distribute it with 43% to scholarships, 28% to public service and 29% to remodeling. How much money will each location receive in grants?

Rewrite your system of equations from earlier in this lesson:

We can represent this system using the following linear systems of equations:

$$\begin{bmatrix} \quad \end{bmatrix} \begin{bmatrix} \quad \end{bmatrix} = \begin{bmatrix} \quad \end{bmatrix}$$
The augmented matrix for this system is:

\[
\begin{bmatrix}
\end{bmatrix}
\]

Using elementary row operations, we find that

\[
\begin{bmatrix}
\end{bmatrix}
\]

So, ______________ goes to the East location, ______________ goes to the West location, and ______________ goes to the South location.

Case 2: There is no solution.

Consider the system of equations:

\[
\begin{align*}
2x - y + z &= 1 \\
3x + 2y - 4z &= 4 \\
-6x + 3y - 3z &= 2
\end{align*}
\]

Augmented matrix:

\[
\begin{bmatrix}
\end{bmatrix}
\]

Using row operation \(R_3 + 3R_1 \to R_3 \), we get

\[
\begin{bmatrix}
\end{bmatrix}
\]
We note that the third row in the augmented matrix is a false statement, so there is no solution to this system.

Case 3: There is an infinite number of solutions.

Consider the system of equations:

\[
\begin{align*}
 x - y + 2z &= -3 \\
 4x + 4y - 2z &= 1 \\
 -2x + 2y - 4z &= 6
\end{align*}
\]

Augmented matrix:

\[
\begin{bmatrix}
 1 & -1 & 2 & | & -3 \\
 4 & 4 & -2 & | & 1 \\
 -2 & 2 & -4 & | & 6
\end{bmatrix}
\]

Using row operations \(R_2 - 4R_1 \rightarrow R_2\) and \(R_3 + 2R_1 \rightarrow R_3\), we get

\[
\begin{bmatrix}
 1 & -1 & 2 & | & -3 \\
 0 & 6 & -10 & | & 13 \\
 0 & 0 & 0 & | & 0
\end{bmatrix}
\]

This represents a system that leaves us with 2 equations and 3 unknowns. So, we are unable to solve for one variable without expressing it in terms of another. This gives us an infinite number of solutions.
Exercises

For each of the following problems, identify your variables and write a system of equations to represent the problem. Then use Gaussian elimination to solve the system.

1. The Frodo Farm has 500 acres of land allotted for cultivating corn and wheat. The cost of cultivating corn and wheat is $42 and $30 per acre, respectively. Mr. Frodo has $18,600 available for cultivating these crops. If he wants to use all the allotted land and his entire budget for cultivating these two crops, how many acres of each crop should he plant? (Adapted from *Finite Mathematics*, Tan p. 93 #51)

2. The Coffee Cart sells a blend made with two different coffees, one costing $2.50 per pound, and the other costing $3.00 per pound. If the blended coffee sells for $2.80 per pound, how much of each coffee is used to obtain the blend? (Assume that the weight of the coffee blend is 100 pounds.) (Adapted from *Finite Mathematics*, Tan p. 93 #53)

3. The Maple Movie Theater has a seating capacity of 900 and charges $2 for children, $3 for students, and $4 for adults. At a screening with full attendance last week, there were half as many adults as children and students combined. The receipts totaled $2800. How many adults attended the show? (Adapted from *Finite Mathematics*, Tan p. 97 #60)

4. The Toolies have a total of $100,000 to be invested in stocks, bonds, and a money market account. The stocks have a rate of return of 12% per year, while bonds pay 8% per year, and the money market account pays 4% per year. They have decided that the amount invested in stocks should be equal to the difference between the amount invested in bonds and 3 times the amount invested in the money market account. How should the Toolies allocate their resources if they require an annual income of $10,000 from their investments? (Adapted from *Finite Mathematics*, Tan p. 106 #36)
Lesson 4 - Games – Student Version

❖ Student version begins on next page
Solve the following Nonogram puzzles. Nonograms are picture logic puzzles in which cells in a grid must be colored or left blank according to the numbers at the side of the grid to reveal a hidden picture. For example: 1 5 2 means 1 square, 5 squares, and 2 squares, in this order, separated by one or more spaces between them.

Example:

1)

2)

3)

4)

5)
Solve the following Kakuro puzzles. Each puzzle consists of a blank grid with sum-clues in various places. The object is to fill all empty squares using numbers 1 to 9 so the sum of each horizontal block equals the clue on its left, and the sum of each vertical block equals the clue on its top. In addition, no number may be used in the same block more than once.

Example:

6)

7)

8)

9)

10)
Challenge Problems!

11)

12)

13)
Lesson 5-Warm Up-Student Version

- Student version begins on next page
What are the 3 Elementary Row Operations that you can use while completing Gaussian Elimination?

4)

5)

6)

What are the 3 possible conclusions that you can make about solving a system of equations?

•

•

•

During Gaussian Elimination, how do you determine which case you have ended up with?

4)

5)

6)
Lesson 5 – Guided Notes Student Version

- Student version begins on next page
Yesterday we played the “Guess my Square” game where we discovered that there are more than one solution sets to our squares. Today we are going to look at how we can use a similar approach and result in one, unique solution. This approach that we will look at today is how the rays in x-rays move through the body to result in the best image outcome possible.

Given the information in the diagram below, write the system of equations that corresponds.

If we think about the above image as matrix x and $x = \begin{bmatrix} f_1 & f_3 \\ f_2 & f_4 \end{bmatrix}$, the first thing we want to do is vectorize this matrix.

$$x = \begin{bmatrix} \end{bmatrix}$$

Now, write the matrix-vector equation in the form $Ax=b$.

$$\begin{bmatrix} \end{bmatrix} \begin{bmatrix} \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$$

Consider the true solution of $x = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 4 \end{bmatrix}$. What does this matrix look like if we vectorize it?

$$x = \begin{bmatrix} \end{bmatrix}$$
Now, write down the corresponding vector b

\[b = \]

Using vector b and matrix A from above, write the augmented matrix.

Now we solve for vector x by using Gaussian Elimination.

1)

2)

3)

4)

5)
Set up the new system of equations from your final matrix in your Gaussian Elimination.

What does the $0 = 0$ tell you about the system of equations?

Therefore, according to our rules of Gaussian Elimination, we will end up with ________________ solutions.

Since you are not able to solve for a unique solution, instead solve for $f_1, f_2, and f_3$ in terms of f_4.

Refer to the “Guess my Square” game from yesterday. What value of f_4 would make your team guess the opposing team’s answer?

Making the solution unique

Since the above system gives you infinite solutions, we must now add in more rays. Given the information in the new diagram below, write the new system of equations that corresponds.

Write the matrix-vector equation in the form $Ax=b$.

$$
\begin{bmatrix}
\end{bmatrix}
\begin{bmatrix}
\end{bmatrix}=
\begin{bmatrix}
\end{bmatrix}
$$
If matrix \(\mathbf{x} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \), write vector \(\mathbf{x} \).

\[
\mathbf{x} = \begin{bmatrix} \vdots \\
\vdots \\
\end{bmatrix}
\]

Now, write down the corresponding vector \(\mathbf{b} \).

\[
\mathbf{b} = \begin{bmatrix} \vdots \\
\vdots \\
\end{bmatrix}
\]

Using the new vector \(\mathbf{b} \) and new matrix \(\mathbf{A} \) from above, write the augmented matrix.

\[
\begin{bmatrix} \vdots \\
\vdots \\
\end{bmatrix}
\]

Now prove that there is a unique solution and solve for vector \(\mathbf{x} \) by using Gaussian Elimination.

1)

\[
\begin{bmatrix} \vdots \\
\vdots \\
\end{bmatrix}
\]

2)

\[
\begin{bmatrix} \vdots \\
\vdots \\
\end{bmatrix}
\]

3)

\[
\begin{bmatrix} \vdots \\
\vdots \\
\end{bmatrix}
\]
Write the new system of equations from the final matrix in your Gaussian Elimination.
Are you able to solve this system of equations? Why?

If yes, solve the system of equations.

зерно Final Answer: $x = \begin{bmatrix} \end{bmatrix}$ (Note: You should get the same vector x that we have above)
Lesson 5-Worksheet Student Version

- Student version begins on next page
Given the information in the diagram below, write the system of equations that corresponds.

Write the matrix-vector equation in the form $Ax=b$.

If $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$, write down the corresponding vector b.

Using vector b and matrix A from above, write the augmented matrix.
Now prove that there is a unique solution and solve for vector x by using Gaussian Elimination.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
As you can see, this will give you infinite solutions. Why did this system give you infinite solutions?

Since the above system gives you infinite solutions, we must now add in more rays. Given the information in the new diagram below, write the new system of equations that corresponds.

Write the matrix-vector equation in the form $Ax=b$.

If $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$, write down the corresponding vector b.

Using the new vector b and new matrix A from above, write the augmented matrix.
Now prove that there is a unique solution and solve for vector x by using Gaussian Elimination.

1)

2)

3)

4)

5)

6)

7)
Write and solve the new system of equations from the final matrix in your Gaussian Elimination.

Final Answer: \(x = \) (Note: You should get the same vector \(x \) that we have above)